domingo, 27 de octubre de 2013

MEDIOS DE TRANSMISION



Para que una red funcione, los dispositivos deben estar interconectados, ya sea por medios cableados o inalámbricos. El soporte físico a través del cual emisor y receptor pueden comunicarse se conoce como medio de transmisión de datos.
 
Los medios de transmisión se pueden dividir en dos grandes categorías: guiados y no guiados.
 
 
MEDIOS GUIADOS
 
Los medios guiados son aquellos que utilizan componentes físicos y sólidos para la transmisión de datos. Están constituidos por un cable conductor de un dispositivo al otro. Algunos de los medios de transmisión guiados más utilizados son: cables de pares trenzados, cables coaxiales y cables de fibra óptica.
 
El cable de par trenzado y el coaxial usan conductores metálicos como el cobre que acepta y transporta señales de corriente eléctrica. La fibra óptica es un cable de cristal o plástico que acepta y transporta señales en forma de luz.
 
 
 
1. CABLE DE PAR TRENZADO
 
Es el medio de transmisión guiado más utilizado para datos analógicos y digitales, en diferentes tipos de tráfico: voz, datos y video.
Se le dio este nombre por tener dos alambres de cobre, de 1 mm de espesor, trenzados entre si en forma de hélice y aislados, lo que hace que se elimine la interferencia entre pares y que tenga una baja inmunidad al ruido electromagnético.
 
El cable par trenzado puede alcanzar varios Mbps de ancho de banda, dependiendo del calibre, el material y la distancia. Puede adquirirse por un bajo costo. Un ejemplo de su uso es el sistema telefónico.
 
Existen dos tipos de par trenzado: sin blindaje y blindado.
 
1.1 Cable de par trenzado sin blindaje (UTP: Unshielded Twisted Pair)
 
El cable de par trenzado sin blindaje es el tipo más frecuente de medio de comunicación que se usa actualmente, tiene una amplia difusión en telefonía  y en redes LAN.
 
Está formado por dos hilos, cada uno de los cuales está recubierto de material aislante; como Teflón o PVC, debido a que el primero genera poco humo en incendios. Se distinguen dos tipos de recubrimiento: el rígido (para cableado vertical y horizontal) y flexible (para patch cord).
 
Generalmente, como se muestra en la siguiente figura, posee 4 pares: blanco azul-azul, blanco naranja- naranja, blanco verde-verde, blanco café-café.
 
 
CATEGORÍAS DE UTP
 
“La especificación 568A Commercial Building Wiring Standard de la asociación Industrias Electrónicas e Industrias de la Telecomunicación (EIA/TIA) especifica el tipo de cable UTP que se utilizará en cada situación y construcción. Dependiendo de la velocidad de transmisión ha sido dividida en diferentes categorías:
 
Categoría 1: Hilo telefónico trenzado de calidad de voz no adecuado para las transmisiones de datos. Las características de transmisión del medio están especificadas hasta una frecuencia superior a 1MHz.
 
Categoría 2: Cable par trenzado sin apantallar. Las características de transmisión del medio están especificadas hasta una frecuencia superior de 4 MHz. Este cable consta de 4 pares trenzados de hilo de cobre.
 
Categoría 3: Velocidad de transmisión típica de 10 Mbps para Ethernet. Con este tipo de cables se implementa las redes Ethernet 10BaseT. Las características de transmisión del medio están especificadas hasta una frecuencia superior de 16 MHz. Este cable consta de cuatro pares trenzados de hilo de cobre con tres entrelazados por pie.
 
Categoría 4: La velocidad de transmisión llega hasta 20 Mbps. Las características de transmisión del medio están especificadas hasta una frecuencia superior de 20 MHz. Este cable consta de 4 pares trenzados de hilo de cobre.
 
Categoría 5: Es una mejora de la categoría 4, puede transmitir datos hasta 100Mbps y las características de transmisión del medio están especificadas hasta una frecuencia superior de 100 MHz. Este cable consta de cuatro pares trenzados de hilo de cobre.
 
Categoría 6: Es una mejora de la categoría anterior, puede transmitir datos hasta 1Gbps y las características de transmisión del medio están especificadas hasta una frecuencia superior a 250 MHz.
 
Categoría 7. Es una mejor de la categoría 6, puede transmitir datos hasta 10 Gbps y las características de transmisión del medio están especificadas hasta una frecuencia superior a 600 MHz.”  [47]
 
 
1.2 Cable de par trenzado blindado (STP: Shield Twiested Pair)
 
El cable de par trenzado blindado (STP) combina las técnicas de blindaje, cancelación y trenzado de cables. Tiene una funda de metal o un recubrimiento de malla entrelazada que envuelve cada par de hilos aislados; lo que hace que tenga mayor protección que el UTP, protegiéndolo contra interferencias y ruido eléctrico, haciendo que sea difícil de instalar.
 
Es utilizado generalmente dentro de centros de informática por su capacidad y sus buenas características contra las radiaciones electromagnéticas. La pantalla del STP, para que sea más eficaz, requiere una configuración de interconexión con tierra.
 
 
2. CABLE COAXIAL
 
El cable coaxial consiste de un conductor de cobre rodeado de una capa de aislante flexible. El conductor central también puede ser hecho de un cable de aluminio cubierto de estaño que permite que el cable sea fabricado de forma económica.
 
Para su conexión se utilizan  conectores BNC simples y en T. En una red al final del cable principal de red se deben instalar resistencias especiales, resistores, para evitar la reflexión de las ondas de señal.
 
Componentes del cable coaxial:
 
 
2.1  Banda base (Baseband).
 
Es de bajo costo, tiene mayor inmunidad al ruido que el cable de pares  y es usado en redes locales como:
 
10BASE-5: Coaxial grueso, 5 segmentos c/u de 500 mts, 100 estaciones por segmento.
10BASE-2: Coaxial delgado, 5 segmentos, c/u de 200 mts, 30 estaciones por segmento.
 
Se utiliza para transmisión digital, operando en modo halfduplex.
 
Está compuesto por un núcleo de cobre, aislante y malla conductora. Tiene 50 ohmios y con cables de 1 km se alcanzan 10 Mbps.
 
Existen dos tipos de cable coaxial banda base: coaxial grueso (Thick) y coaxial fino (Thin).
 
 
2.2 Banda ancha (Broadband)
 
Es utilizado para infraestructura de TV por cable,  para  la transmisión de datos con el acceso a Internet y también permite aplicaciones en tiempo real. Se conoce como la red HFC (Hybrid Fiber Coaxial).
 
Tiene un alcance de 5 Kmts, un ancho de banda de 300-450 Mhz y un tamaño de canal de TV de 6 Mhz. Es posible alcanzar hasta 150 Mbps, pero necesita amplificadores intermedios que conviertan el canal en unidireccional.  
 
Broadband se utiliza para transmisión analógica y aunque cada canal es half duplex, con 2 se obtiene full duplex.
 
 
3. FIBRA ÓPTICA
 
La luz es una onda electromagnética y por tanto posee características como reflexión y refracción. La fibra óptica se basa en este último principio, donde en vez de corriente eléctrica se transmite luz. Está construida a partir de vidrio (SiO2) o plásticos altamente puros (Kebral).
 
 
Para transmisión digital la presencia de luz simboliza un 1, y la ausencia un 0. Puede transmitirse hasta a 1000 Mbps en 1 km y 100 km sin repetidores (a menor velocidad). Aunque hoy tiene un ancho de banda de 50.000 Gbps, es limitada por la conversión entre las señales ópticas y eléctricas (1 Gbps).
 
El sistema de fibra óptica está constituido por 3 componentes que son:
 
Emisor: Es la fuente de Luz (LED/LASER) que se encarga de conviertir energía eléctrica en óptica.
Medio: La fibra óptica encargada de llevar los pulsos de luz.
Receptor: El Fotodetector que convierte pulsos de luz en eléctricos.
 
 
Principios de la propagación de la luz
 
La fibra óptica está compuesta por dos capas de vidrio, cada una con distinto índice de refracción. El índice de refracción del núcleo es mayor que el del revestimiento, por la cual, la luz introducida al interior de la fibra se mantiene y propaga a través del núcleo.
 
El modo de propagación hace referencia a las diferentes trayectorias que sigue la luz al interior del núcleo en su recorrido del origen al destino. La fibra puede ser: Multimodo o Monomodo.                 
[48]
Conectores de fibra óptica
Usos de la Fibra Óptica
Ventajas
 
  • Mayor ancho de banda.
  • Mayor distancia por menor atenuación.
  • Ocupa menos espacio.
  •  Al ser un dieléctrico es mejor en entornos con tierras eléctricas diferentes, o para evitar descargas ante rayos.
  •  Su ancho de banda es muy grande, gracias a técnicas de multiplexación por división de frecuencias, que permiten enviar hasta 100 haces de luz (cada uno con una longitud de onda diferente) a una velocidad de 10 Gb/s cada uno por una misma fibra, se llegan a obtener velocidades de transmisión totales de 1 Tb/s.
  • Es inmune totalmente a las interferencias electromagnéticas.
  • Es segura, ya que al permanecer el haz de luz confinado en el núcleo, no es posible acceder a los datos trasmitidos por métodos no destructivos. Además se puede instalar en lugares donde puedan haber sustancias peligrosas o inflamables, porque no transmite electricidad.
  • Mayor resistencia a medios corrosivos.
 
 
Desventajas.
 
  • Es más costosa, en parte por la necesidad de usar transmisores y receptores más caros.
  • Requiere herramienta especial
  • Por la alta fragilidad de las fibras requiere mayor cuidado en la instalación y mantenimiento.
  • Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de ruptura del cable.
  • No puede transmitir electricidad para alimentar repetidores intermedios.
  • No existen memorias ópticas.

martes, 22 de octubre de 2013

internet




Internet





Sus orígenes se remontan a la década de 1960, dentro de ARPA (hoy DARPA), como respuesta a la necesidad de esta organización de buscar mejores maneras de usar los computadores de ese entonces, pero enfrentados al problema de que los principales investigadores y laboratorios deseaban tener sus propios computadores, lo que no sólo era más costoso, sino que provocaba una duplicación de esfuerzos y recursos. Así nace ARPANet (Advanced Research Projects Agency Network o Red de la Agencia para los Proyectos de Investigación Avanzada de los Estados Unidos), que nos legó el trazado de una red inicial de comunicaciones de alta velocidad a la cual fueron integrándose otras instituciones gubernamentales y redes académicas durante los años 70.
Investigadores, científicos, profesores y estudiantes se beneficiaron de la comunicación con otras instituciones y colegas en su rama, así como de la posibilidad de consultar la información disponible en otros centros académicos y de investigación. De igual manera, disfrutaron de la nueva habilidad para publicar y hacer disponible a otros la información generada en sus actividades.
En el mes de julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Lawrence Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí. Para explorar este terreno, en 1965, Roberts conectó una computadora TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de computadoras de área amplia jamás construida.


Internet es un conjunto descentralizado de redes de comunicación interconectadas. En esta red de redes, existen muchas tecnologías diferentes comunicándose entre sí, aunque desde un punto de vista abstracto, o lógico, no haya diferencia entre ellas: todas están identificadas mediante la correspondiente dirección de red IP.
Sin embargo, desde el punto de vista práctico conectarnos a Internet usando una red más o menos evolucionada tecnológicamente tiene consecuencias de muy distinto tipo: económicas, de tiempo, de eficiencia, etc. Incluso existen, en la práctica, restricciones físicas al tipo de conexión al que podemos acceder, de modo que cuando se dispone de varias posibilidades no está de más tener algunos elementos de juicio para seleccionar la más conveniente.
En esta sección, proporcionamos información básica sobre los tipos de conexiones disponibles entre el proveedor de servicios de Internet y los usuarios finales, junto con algunos tipos que conexión utilizados para implementar redes locales que después se conectarán a Internet.
Existen múltiples criterios para clasificar las conexiones a Internet, al menos tantos como tipos de redes a las que podemos conectar nuestro equipo. Dichas diferencias pueden encontrarse en el nivel físico y el tipo de tecnología de que se sirven (a nivel de la capa de enlace).

a) Línea telfónica
       a.1) Línea telefónica convencional
               RTB, red telefónica básica.
       a.2) Línea digital
               RDSI
               ADSL
b) Cable
c) Satélite
d) Redes inalámbricas
e) LMDS
f) PLC
g) Telefonía móvil
     GSM, GPRS, UMTS, HSDPA.

Red Telefónica Conmutada (RTC)
Hasta hace pocos años, el sistema más extendido para conectar un equipo doméstico o de oficina a la Internet consistía en aprovechar la instalación telefónica básica (o Red Telefónica Básica, RTB).
Puesto que la RTB transmite las señales de forma analógica, es necesario un sistema para demodular las señales recibidas por el ordenador de la RTB (es decir, para convertirlas en señales digitales), y modular o transformar en señales analógicas las señales digitales que el ordenador quiere que se transmitan por la red. Estas tareas corren a cargo de un módem que actúa como dispositivo de enlace entre el ordenador y la red.
La ventaja principal de la conexión por RTB, y que explica su enorme difusión durante años, es que no requería la instalación de ninguna infraestructura adicional a la propia RTB de la que casi todos los hogares y centros de trabajo disponían.
Sin embargo, tenía una serie de desventajas, como:
  • El ancho de banda estaba limitado a 56 Kbps, en un único canal (half-duplex), por lo que cuando el tráfico de Internet comenzó a evolucionar y algunos servicios como el streaming se convirtieron en habituales, se puso en evidencia su insuficiencia (por ejemplo, un archivo de 1 MB tardaría, en condiciones óptimas de tráfico en la red, dos minutos y medio en descargarse).
  • Se trata de una conexión intermitente; es decir, se establece la conexión cuando se precisa, llamando a un número de teléfono proporcionado por el proveedor de servicios, y se mantiene durante el tiempo que se precisa. Esto, que podría parecer una ventaja, deja de serlo debido a que el tiempo de conexión es muy alto (unos 20 segundos).
  • La RTB no soportaba la transmisión simultánea de voz y datos.
Aunque hoy continúa utilizándose, la RTB ha quedado desplazada por otras conexiones que ofrecen mayores ventajas.

Red digital RDSI
La Red Digital de Servicios Integrados (RDSI) nació con la vocación de superar los inconvenientes de la RTB, lo que sin duda logró en parte.
Se trata de una línea telefónica, pero digital (en vez de analógica) de extremo a extremo. En vez de un módem, este tipo de conexión emplea un adaptador de red que traduce las tramas generadas por la el ordenador a señales digitales de un tipo que la red está preparada para transmitir.
A nivel físico, la red requiere un cableado especial (normalmente un cable UTF con conectores RJ-45 en los extremos), por lo que no puede emplearse la infraestructura telefónica básica (y esto, naturalmente, encarece su uso).
En cuanto a sus características técnicas, la RDSI proporciona diversos tipos de acceso, fundamentalmente acceso básico y primario. La transmisión de señales digitales permite la diferenciación en canales de la señal que se transmite. Por ejemplo, en el caso del acceso básico, se dispone de cinco canales de transmisión: 2 canales B full-duplex, para datos, de 64Kbps cada uno; un canal D, también full-duplex, pero de 16 Kbps; más dos canales adicionales de señalización y framing, con una ancho de banda total de 192 Kbps.
El hecho de tener diversos canales permite, por ejemplo, utilizar uno de ellos para hablar por teléfono y otro para transmitir datos, superando así una de las deficiencias de la RTB.
Lo más frecuente es que existan varios canales más de tipo B (de 23 a 30 según las zonas donde se implemente), y por tanto se pueden prestar multitud de servicios (fax, llamada a tres, etc.)
Aunque la RDSI mejoró sustancialmente la RTB, no llegó a extenderse masivamente debido a la aparición de otras conexiones más ventajosas.

Red digital ADSL
La ADSL (Asymmetric Digital Subscriber Line) conjuga las ventajas de la RTB y de la RDSI, por lo que se convirtió pronto en el tipo de conexión favorito de hogares y empresas.
La ADSL aprovecha el cableado de la RTB para la transmisión de voz y datos, que puede hacerse de forma conjunta (como con la RDSI). Esto se consigue estableciendo tres canales independientes sobre la misma línea telefónica estándar:
  • Dos canales de alta velocidad, uno para recibir y otro para enviar datos, y
  • Un tercer canal para la comunicación normal de voz.
El nombre de “asimétrica” que lleva la ADSL se debe a que el ancho de banda de cada uno de los canales de datos es diferente, reflejando el hecho de que la mayor parte del tráfico entre un usuario y la Internet son descargas de la red.
Desde el punto de vista tecnológico, la conexión ADSL se implementa aumentando la frecuencia de las señales que viajan por la red telefónica. Puesto que dichas frecuencias se atenúan con la distancia recorrida, el ancho de banda máximo teórico (8 Mbps en sentido red -> usuario) puede verse reducido considerablemente según la localización del usuario.
Por último comentar que existen mejoras del ADSL básico, ADSL2 y ADSL2+, que pueden alcanzar velocidades cercanas a los 24 Mbps / 1,2 Mbps de bajada y subida de datos, aprovechando más eficientemente el espectro de transmisión del cable de cobre de la línea telefónica.

Conexión por cable
Utilizando señales luminosas en vez de eléctricas es posible codificar una cantidad de información mucho mayor, jugando con variables como la longitud de onda y la intensidad de la señal lumínica. La señal luminosa puede transportarse, además, libre de problemas de ruido que afectan a las ondas electromagnéticas.
La conexión por cable utiliza un cable de fibra óptica para la transmisión de datos entre nodos. Desde el nodo hasta el domicilio del usuario final se utiliza un cable coaxial, que da servicio a muchos usuarios (entre 500 y 2000, típicamente), por lo que el ancho de banda disponible para cada usuario es variable (depende del número de usuarios conectados al mismo nodo): suele ir desde los 2 Mbps a los 50 Mbps.
Desde el punto de vista físico, la red de fibra óptica precisa de una infraestructura nueva y costosa, lo que explica que aún hoy no esté disponible en todos los lugares.

Conexión vía satélite
En los últimos años, cada vez más compañías están empleando este sistema de transmisión para distribuir contenidos de Internet o transferir ficheros entre distintas sucursales. De esta manera, se puede aliviar la congestión existente en las redes terrestres tradicionales.

El sistema de conexión que generalmente se emplea es un híbrido de satélite y teléfono. Hay que tener instalada una antena parabólica digital, un acceso telefónico a Internet (utilizando un módem RTC, RDSI, ADSL o por cable), una tarjeta receptora para PC, un software específico y una suscripción a un proveedor de satélite.El cibernauta envía sus mensajes de correo electrónico y la petición de las páginas Web, que consume muy poco ancho de banda,  mediante un módem tradicional, pero la recepción se produce por una parabólica, ya sean programas informáticos, vídeos o cualquier otro material que ocupe muchos megas. La velocidad de descarga a través del satélite puede situarse en casos óptimos en torno a 400 Kbps.

Redes inalámbricas
Las redes inalámbricas o wireless difieren de todas las vistas anteriormente en el soporte físico que utilizan para transmitir la información.  Utilizan señales luminosas infrarrojas u ondas de radio, en lugar de cables, para transmitir la información.
Con tecnología inalámbrica suele implementarse la red local (LAN) q se conecta mediante un enrutador a la Internet, y se la conoce con el nombre de WLAN (Wireless LAN).
Para conectar un equipo a una WLAN es preciso un dispositivo WIFI instalado en nuestro ordenador, que proporciona una interfaz física y a nivel de enlace entre el sistema operativo y la red. En el otro extremo existirá un punto de acceso (AP) que, en el caso de las redes WLAN típicas, está integrado con el enrutador que da acceso a Internet, normalmente usando una conexión que sí utiliza cableado.
Cuando se utilizan ondas de radio, éstas utilizan un rango de frecuencias desnormalizadas, o de uso libre, dentro del cual puede elegirse. Su alcance varía según la frecuencia utilizada, pero típicamente varía entre los 100 y 300 metros, en ausencia de obstáculos físicos.
Existe un estándar inalámbrico, WiMAX, cuyo alcance llega a los 50 Km, que puede alcanzar velocidades de transmisión superiores a los 70 Mbps y que es capaz de conectar a 100 usuarios de forma simultánea. Aunque aún no está comercializado su uso, su implantación obviamente podría competir con el cable en cuanto a ancho de banda y número de usuarios atendidos.

LMDS
El LMDS (Local Multipoint Distribution System) es otro sistema de comunicación inalámbrico pero que utiliza ondas de radio de alta frecuencia (28 GHz a 40 GHz). Normalmente se utiliza este tipo de conexiones para implementar la red que conecta al usuario final con la red troncal de comunicaciones, evitando el cableado.
El LMDS ofrece las mismas posibilidades en cuanto a servicios que el cable o el satélite, con la diferencia de que el servicio resulta mucho más rentable (no es necesario cableado, como con la fibra óptica, ni emplear grandes cantidades de energía para enviar las señales, como con la conexión satélite).

PLC
La tecnología PLC (Power Line Communications) aprovecha las líneas eléctricas para transmitir datos a alta velocidad. Como las WLAN, se utiliza en la actualidad para implementar redes locales, que se conectarían a la Internet mediante algún otro tipo de conexión.
El principal obstáculo para el uso de esta tecnología en redes no locales consiste en que la información codificada en la red eléctrica no puede atravesar los transformadores de alta tensión, por lo cual requeriría adaptaciones técnicas muy costosas en éstos.

Conexiones para teléfonos móviles
Hablamos de conexiones para teléfonos móviles (en contraposición a conexiones a través de teléfonos móviles, en las que el móvil actuaría como módem) para designar el tipo de tecnologías específicas para acceder a Internet navegando desde el propio dispositivo móvil.
El sistema GSM (Global System Mobile) fue el primer sistema estandarizado en la comunicación de móviles. Se trata de un sistema que emplea ondas de radio como medio de transmisión (la frecuencia que se acordó inicialmente fue 900 MHz, aunque se amplió después a 1800 MHz). Hoy en día, el ancho de banda alcanza los 9,6 Kbps.
GSM establece conexiones por circuito; es decir, cuando se quiere establecer una comunicación se reserva la línea (y, por tanto, parte del ancho de banda de que dispone la operadora para realizar las comunicaciones), y ésta permanece ocupada hasta que la comunicación se da por finalizada. Una evolución de este sistema consistió en utilizar, en su lugar, una conexión por paquetes, similar a la que se utiliza en Internet. Este estándar evolucionado se conoce con el nombre de GPRS (General Packet Radio Service) y está más orientado (y mejor adaptado) al tráfico de datos que GSM. Por ejemplo, permite la facturación según la cantidad de datos enviada y recibida, y no según el tiempo de conexión.
Los sistemas anteriores se consideran de segunda generación (2G).
El UMTS (Universal Mobile Telecommunications System) inaugura la tercera generación de tecnología para móviles (3G). Permite velocidades de transferencia mucho mayores que GSM y GPRS, llegando hasta los 2 Mbps, permitiendo así el uso de aplicaciones que hasta ahora parecían imposibles en un móvil.
Una mejora del UMTS es el HSDPA (High Speed Downlink Packet Access), que llega a alcanzar los 14 Mbps de velocidad de transferencia. Existe ya una mejora comercializada de este sistema, HSDPA+, que permite (teóricamente) llegar a los 80 Mbps de transferencia, si bien ya es posible conectarse a velocidades superiores a los 21 Mbps en muchos lugares en España.



 MEDIOS DE TRANSMISION




Dentro de LOS MEDIOS DE TRANSMISION habrá medios guiados y medios no guiados; la diferencia radica que en los medios guiados el canal por el que se transmite las señales son medios físicos, es decir, por medio de un cable; y en los medios no guiados no son medios físicos.

Guiados:

Alambre: se uso antes de la aparición de los demás tipos de cables (surgió con el telégrafo).
Guía de honda: verdaderamente no es un cable y utiliza las microondas como medio de transmisión.
Fibra óptica: es el mejor medio físico disponible gracias a su velocidad y su ancho de banda, pero su inconveniente es su coste.
Par trenzado: es el medio más usado debido a su comodidad de instalación y a su precio.
Coaxial: fue muy utilizado pero su problema venia porque las uniones entre cables coaxial eran bastante problemáticas.

No guiados:

Infrarrojos: poseen las mismas técnicas que las empleadas por la fibra óptica pero son por el aire. Son una excelente opción para las distancias cortas, hasta los 2km generalmente.
Microondas: las emisiones pueden ser de forma analógica o digitales pero han de estar en la línea visible.
Satélite: sus ventajas son la libertad geográfica, su alta velocidad…. pero sus desventajas tiene como gran problema el retardo de las transmisiones debido a tener que viajar grandes distancias.
Ondas cortas: también llamadas radio de alta frecuencia, su ventaja es que se puede transmitir a grandes distancias con poca potencia y su desventaja es que son menos fiables que otras ondas.
Ondas de luz: son las ondas que utilizan la fibra óptica para transmitir por el vidrio.